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Abstract

The interactions of charged particles in a plasma are governed by long-range Coulomb collision. We compare two
widely used Monte Carlo models for Coulomb collisions. One was developed by Takizuka and Abe in 1977, the other
was developed by Nanbu in 1997. We perform deterministic and statistical error analysis with respect to particle number
and time step. The two models produce similar stochastic errors, but Nanbu’s model gives smaller time step errors. Error
comparisons between these two methods are presented.
Published by Elsevier Inc.
1. Introduction

A plasma consists of a large number of charged particles. An appropriate method to describe a plasma state
is a statistical approach, i.e., a distribution function provides a complete description of the system. If a plasma
is highly collisional, its distribution function will be rapidly driven to thermodynamical equilibrium, and the
plasma kinetics can be approximated by a fluid description. On the other hand, if a plasma is collisionless, the
plasma is not necessarily in equilibrium, and each particle interacts with the rest of the plasma through the
collective effects of long-range electromagnetic fields. In the intermediate regime between the two cases, col-
lisional effects have to be included specifically to provide an adequate description of plasma kinetics. One sig-
nificant example is the edge plasma (scrape-off layer) in a confinement fusion device. A fluid approximation is
not valid since the high energy (superthermal) electrons result in a relatively large ratio of the mean free path
to the system’s characteristic length. A kinetic approach is essential for satisfactory physical modeling and
numerical simulations for such plasmas [1].
0021-9991/$ - see front matter Published by Elsevier Inc.
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One feature which distinguishes a plasma from a fluid is that its particles are charged and have long-range
Coulomb interactions. A particle in a plasma has distant encounters with many other particles simultaneously,
and each encounter produces a small collisional effect on the particle. The scattering of particles due to multi-
ple small collisions is dominant and is more important than the single large-angle scattering. For this reason,
the Coulomb scattering angle can be treated as the cumulative deflection of a series of small-angle binary col-
lisions [2].

One of the earliest and most influential Monte Carlo binary collision models was proposed by Takizuka &
Abe in 1977 [3]. In their method, the domain is divided into cells and particles are grouped within each cell.
Randomly chosen pairs of particles undergo binary collisions. The resulting scattering angle is sampled
through a Gaussian distribution to compute the change in velocities. Their method simulates each small-angle
collision and requires a time step much smaller than the overall relaxation time for the entire velocity distri-
bution function.

Nanbu proposed a new Monte Carlo binary collision model in 1997 [4]. His method uses the idea that a
Coulomb collision can be described by many continuous small-angle binary collisions [2]. Nanbu’s method
computes the cumulative scattering angle for many small binary deflections. Successive small angles are
grouped into one single collision angle. This suggests that a larger time step may be used in his method.

The two methods proposed by Takizuka & Abe and Nanbu have been widely used in the plasma physics
community. Nanbu’s method has been considered more efficient than Takizuka & Abe’s method because it
computes a accumulative Coulomb scattering angle rather than a single Coulomb scattering angle one by
one. For this reason, we are interested in performing a convergence analysis to compute the errors and to
derive the orders of accuracy for both methods to quantitatively compare their performance and relative effi-
ciencies. We also believe these models have the potential to be used to extend the hybrid method for rarefied
gas dynamics [5] to a plasma with Coulomb collisions.

For simplicity, in this article we call the collision model developed by Takizuka and Abe ‘‘TA’s method”

and the model developed by Nanbu ‘‘Nanbu’s method”. To test these two models, we use a test problem that
consists of a spatially homogeneous plasma with no electric or magnetic fields, as described in [3,4]. We sim-
ulate the relaxation of an anisotropic Maxwellian distribution (i.e., a distribution with anisotropic tempera-
tures) over time due to collisions, using the results to evaluate the accuracy and efficiency of these two
methods. We test both electron–electron and electron–ion collision cases and obtain comprehensive conver-
gence results. We find a few similarities of the results computed using the two methods. For the average solu-
tions, both methods have square root of the time step accuracy O

ffiffiffiffiffi
Dt
p� �

. The random errors are independent
of time step, and diminish like O N�

1
2

� �
when the number of particles N grows. In the conclusion, we evaluate

the significance of the results, as well as consider some advantages to Nanbu’s method and its possible
applications.

The article is organized as follows. First we describe the collision models formulated by Takizuka & Abe,
and Nanbu in Section 2. In Section 3, we propose a test case and define the quantities for the convergence
analysis. Next, we present the simulation results for Nanbu’s method and TA’s method, and compare the dif-
ferences in the results obtained in Section 4. Concluding remarks and a summary are offered in Section 5.

2. General formulation

We first introduce the governing equation for the physical process, and describe TA and Nanbu’s Monte
Carlo binary collision models. We will emphasize the major distinguishing aspect of the two collision models:
computing the scattering angle of two colliding particles. We consider collisions between N particles
from two species a and b. For simplicity, we assume that N is even. If a and b are the same, we assume that
there are N=2a particles and N=2b particles. If a and b are different, then there are Na particles and Nb
particles.

2.1. Governing equation

The time evolution of the particle distribution in a non-equilibrium plasma is described by the Fokker–
Planck equation:
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faðv; x; 0Þ ¼ fa0ðv; xÞ
where fa is the distribution function of the a species, ma is the mass of the a species, E is the electric field, B is
the magnetic field. dfa

dt

� �
c

is the collision operator and defined as the following:
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where log K is the Coulomb logarithm. The equation for fb is similar. The collision operator defined in (1) is
the called the Landau–Fokker–Planck collision operator [6].

TA and Nanbu’s collision models can be considered as numerical approximations to the Fokker–Planck
collision operator. We will discuss the two models for a spatially homogeneous plasma in the following
two sections.

2.2. Takizuka and Abe’s collision model

The scattering angle in TA’s method is defined in the relative velocity frame. First two particles with veloc-
ity va and vb are selected. Let H be the scattering angle between two particles in the relative frame. The angle H
is sampled randomly through a random variable d related to H by the function tan. Specifically,
d � tanðH=2Þ ð2Þ

where d is a Gaussian random variable which has mean 0 and the following variance
hd2i ¼
e2

ae2
bnL log K

8p�2
0m2

abu3

 !
Dt
where ea and eb are electric charges for the species a and b, nL is the smaller density of the particle species a and
b, K is the Coulomb logarithm, u ¼ jva � vbj is the relative speed, Dt is the time step, and mab is the reduced
mass and is defined as follows:
mab ¼
mamb

ma þ mb
:

To compute the velocity changes of the particles due to collision, a Gaussian random variable d is sampled and
used to compute sin H and cos H through the following formulas derived from (2):
sin H ¼ 2d

ð1þ d2Þ
1� cos H ¼ 2d2=ð1þ d2Þ:
sin H and cos H are then used to compute the postcollisional velocities v0a, v0b of the two particles [3].
v0a ¼ va þ
mab

ma
Du

v0b ¼ vb �
mab

mb
Du
and Du is defined as follows:
u ¼ va � vb;

Dux ¼ ðux=u?Þuz sin H cos U� ðuy=u?Þu sin H sin U� uxð1� cos HÞ;
Duy ¼ ðuy=u?Þuz sin H cos Uþ ðux=u?Þu sin H sin U� uyð1� cos HÞ;
Duz ¼ �u? sin H cos U� uzð1� cos HÞ;
and u? ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2

x þ u2
y

q
. The azimuthal angle U is randomly chosen from the uniform interval ½0; 2p�.
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In each time step, TA’s method groups all of the N particles into N/2 pairs, each consisting of an alpha
particle and a beta particle, and performs a single collision for each pair. The random selection of particle
pairs through many time steps approximates the integration of the distribution function over the particles.
The method’s cross section represents the Fokker–Planck process. Hence, TA’s method directly simulates
the Fokker–Planck collision operator (1).

2.3. Nanbu’s collision model

Coulomb collisions in a plasma can be treated as the simulation of many continuous small-angle binary
collisions [2]. Rather than computing every small-angle binary collision as in TA’s method, Nanbu’s method
provides a procedure to compute the aggregated scattering angle of many small angle binary collisions for a
given pair of velocities va and vb.

Let g0 be the initial velocity and g1; g2; . . . ; gN be the postcollision velocities after first, second, . . ., and N

collisions. Let vN be the cumulative scattering angle after N collisions. vN is defined as the following
cos vN ¼ g0 � gN=g2
where g ¼ jg0j. vN can be obtained through the following three steps:

1. At the beginning of the time step, calculate a quantity s
s ¼ nbgpb2
0ðln KÞDt
where b0 is the impact parameter, nb is the density of field particles, K is the Coulomb logarithm and Dt is
the time step.

2. Use s to determine a constant A from the following equation:
coth A� A�1 ¼ e�s:
The constant A will be used to define the probability density of vN .
3. Sample the cumulative scattering angle vN with the following probability density function F ðvN Þ:
F ðvNÞ ¼
2pA

4p sinh A
eA cos v sin vN :
The velocities after cumulative collisions are
v0a ¼ va �
mab

ma
½gð1� cos vÞ þ h sin v�;

v0b ¼ vb þ
mab

mb
½gð1� cos vÞ þ h sin v�;
where g ¼ va � vb and h ¼ ðhx; hy ; hzÞ with
hx ¼ g? cos �;

hy ¼ �ðgygx cos �þ ggz sin �Þ=g?;

hz ¼ �ðgzgx cos �� ggy sin �Þ=g?;
and g? ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2

y þ g2
z

q
and � is a random number uniformly distributed in ½0; 2p�.

Nanbu’s method is motivated by physical considerations associated with Coulomb collisions in the Fok-
ker–Planck limit. In a subsequent work, Bobylev and Nanbu [7] derived a time–explicit formula to approxi-
mate the time evolution of plasmas from the Boltzmann equation. Their analysis theoretically verifies that,
when Dt! 0, the numerical solutions computed using Nanbu’s method are the solutions of the Fokker–
Planck equation. More specifically, the method approximates the collision operator J of the Boltzmann equa-
tion by an exponential operator defined by J and then solves an initial-value problem using spherical harmonic
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functions to define the time evolution formula. Similar to the idea that is used to derive Fokker–Planck
equation from the Boltzmann equation [8], small-angle scattering leads to the formula for computing the evo-
lution of a velocity distribution:
faðv; t þ DtÞ ¼
Xn

b¼1

pab

Z
R3�S2

dwdnDab
g � n

g
;K

Dt
g3

� �
faðv0a; tÞfbðv0b; tÞ:
The function Dab is defined by an infinite sum of Legendre polynomials, see [7] for details. Within an error of
OðDtÞ, Dab can be further approximated by functions which are simpler and easier to be computed. In partic-
ular, DH can be defined as follows:
DHðl; sÞ ¼
A

4p sinh A
exp lA:
In this case, the distribution of accumulated scattering angle of Nanbu’s method is F ðvN Þ ¼
2p sin vN DH cos vN

2
; s

2

� �
, and the method may be considered as a special case of a general framework developed

in [7]. We note that both TA and Nanbu’s methods integrate the Fokker–Planck equation from t to t þ Dt with
an explicit scheme using only velocity distribution function data evaluated at t; such an integration scheme is
no better than first-order accurate in Dt. Error accumulation in the TA and Nanbu methods is examined in the
convergence results in Section 4.

3. Test case and definitions

We perform simulations for the equilibration of a plasma which has a spatially homogeneous distribution
function with anisotropic initial temperature for an electron–electron case and for an electron–ion collision
case. Due to the statistical nature of the Monte Carlo model, we extract the deterministic errors by comput-
ing the mean of multiple statistically independent solutions. The statistical errors are computed using
the empirical variance of these solutions. The comparison includes both the deterministic errors and statis-
tical errors when the time steps or number of particles are varied. The error in the numerical solution is
evaluated by comparing it to a highly accurate solution, using a very small time step and a large number
of particles.

3.1. Test case

Our task is to compare the accuracy of the two collision models. For this reason, we assume spatial homo-
geneity and that no electric or magnetic fields exist in the system, and no flow. Then the physical governing
equation becomes the following:
ofa

ot
¼ dfa

dt

� �
c

faðv; 0Þ ¼ fa0ðvÞ:
TA and Nanbu’s collision methods are numerical approximations to the analytic model of the Fokker–Planck
collision term dfa

dt

� �
c
.

We consider the time relaxation of charged particles due to electron and electron collisions or electron and
ion collisions. The initial distribution has small anisotropy, i.e., the parallel temperature and the perpendicular
temperature are slightly different, as shown in Fig. 1 at t ¼ 0. Specifically, we use T z ¼ 0:008 and T p ¼ 0:01 for
our simulation. These temperatures are nominal and used to generate the velocities of particles. The actual
temperatures could be slightly different from the given temperatures T z and T p due to statistical sampling.
All the temperatures (i.e. temperature difference) shown in the simulation results are actual and are computed
using velocity distributions of the particles.

An approximate analytic solution of the test case was derived in [9] using the Fokker–Planck equation in
Landau form and assuming small temperature anisotropy. In [9] the initial distribution is assumed to be the
following:
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Fig. 1. Time relaxation of anisotropic temperatures due to collisions.
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f0ð0; vÞ ¼
m
2p

� �3=2 1ffiffiffiffiffi
T k

p
T?

exp �
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2T k
� mv2

?
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 !
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The temperature T of the system is
T ¼ 1

3
T k þ

2

3
T?:
The conservation of the kinetic energy implies T is constant at all time, hence we have
dT?
dt
¼ � 1

2

dT k
dt
¼
Z

df
dt

mv2
k

2
dv:
Replacing df
dt by the Fokker–Planck operator, and assuming jT k � T?j < T k, the following equation was

derived:
dT?
dt
¼ � 1

2
� dT k
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¼ � T? � T k

15
8
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dDT
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p
ffiffiffi
2
p

e4
a

T 3=2

ln Kna
:

Then we have
DT ðtÞ ¼ DT e�
t
s:
3.2. Simulations

We perform two types of comparison for the e–e case and for the e–i case. For the first type of comparisons,
we keep the number of particles N at a constant value and compare the numerical results at different time steps
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Fig. 3. (e–e case) Average solutions �u; the results using Nanbu’s method are depicted in the left-hand column; results using TA’s method
are shown in the right-hand column. In each graph, the top row results are computed using N ¼ 200 particles and the bottom row results
use N ¼ 3200; average of 16,000 independent realizations.
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Dt. This comparison enables us to see how changes in time step Dt will affect the accuracy of the simulation
solutions. In the second comparison, we keep the time step Dt constant and vary the number of particles N in
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the simulation. This enables us to see how changes in particle number N will affect the accuracy of the sim-
ulation solutions. We also perform more than one set of simulations for each type of comparison. For exam-
ple, we perform simulations with N ¼ 200 and 3200, and for each N we perform simulation at various Dt, see
Fig. 2. This way we can see the effects of N on the simulation results over different Dt’s.

In the e–i case the ions are loaded as an isotropic Maxwellian with mass ration mi=me ¼ 100, charge ratio
ei=ee ¼ �1, and with T i ¼ ðT x þ T y þ T zÞ=3. Electron–ion collisions isotropize the initially anisotropic electron
distribution at a rate that is similar to that for electron–electron collisions, however, the e–i collision differs
physically. The electron–ion collisions are dominated by pitch-angle scattering for mi=me � 1, while in e–e col-
lisions the angle scattering, drag, and energy diffusion are competitive. For an ion temperature similar to the
electron temperature, the ion velocities are much smaller than the electron velocities by Oð

ffiffiffiffiffiffiffiffiffiffiffiffi
mi=me

p
Þ. As a con-

sequence, for purposes of the scattering of the electrons on the ions, the statistical requirements on the much
slower ion velocity distribution are much less than on the electrons in the electron–electron collisions. Further-
more in our simulations there are either N=2 electron pairs (i.e., N electrons) undergoing e–e collisions or N

electron–ion pairs (i.e., N electrons and N ions) undergoing e–i collisions. Thus, the magnitude of the statis-
tical errors for the simulations with e–i collisions should be significantly less than those for the simulations
with e–e collisions; and this is observed.
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Fig. 4. (e–e case) Deterministic errors eD; the results using Nanbu’s method are depicted in the left-hand column; results using TA’s
method are shown in the right-hand column. In each graph, the top row results are computed using N ¼ 200 particles and the bottom row
results using N ¼ 3200; average of 16,000 independent realizations.
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To separate the effects of the statistical fluctuations from the deterministic errors, we compute the mean and
variance of M independent solutions. We call the average of such M independent realizations the deterministic
solution �u
Fig. 5.
TA’s m
row re
�uðDt;NÞ ¼ 1

M

XM

i¼1

ui
where ui ¼ uiðDt;NÞ is the ith independent realization of the solution, and �u is the average of these independent
realizations.

We designate eDðDt;NÞ as the deterministic error when the time step is Dt and the number of particles is N.
Specifically, let uf be a numerical solution computed using a large number of particles and a small time step.
An error eDðDt;NÞ is defined as the difference between the average of M independent solutions computed using
Dt and N and a fine solution uf . In other words,
eDðDt;N ; tÞ ¼ j�uðDt;N ; tÞ � ufðtÞj:
The quantity r2 ¼ r2ðDt;NÞ represents the statistical fluctuations of the M independent solutions computed at
a time step Dt and a number of particles N. r2 is defined by the empirical variance in the following way:
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r2ðDt;NÞ ¼ 1

M

XM

i¼1

ðui � �uÞ2:
Hence r2ðDt;NÞ represents the mean square deviation of the realizations ui from the average solution �u.
To compute the order of accuracy with respect to time step Dt, we first compute the error ratio RðDtÞ
RðDtÞ ¼ �uð4DtÞ � �uð2DtÞ
�uð2DtÞ � �uðDtÞ

����
����:
Let u0 be the exact solution, and assume the average solution �u has order of accuracy of r, i.e.,
�uðDtÞ ¼ u0 þ CðDtÞr:

where C is a constant. Then
RðDtÞ ¼ 2r
and therefore the order of accuracy r
r ¼ log2RðDtÞ:
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For all the computations we present here, ui represents the temperature difference between parallel direction T z

and perpendicular direction T p normalized by the initial temperature difference.
Fig. 7.
metho
results
uiðtÞ ¼
T zðtÞ � T pðtÞ
T zð0Þ � T pð0Þ
is used in the formulas above to define �u and uf . In the computational results described in Section 4, we have
used 16,000 independent simulations. These were divided into M ¼ 160 groups of 100 simulations each with N

particles. The temperatures T z and T p were computed by averaging over each group of 100 simulations to re-
duce the statistical errors. Then the average �u and the variance r2 were computed by averaging over the
M ¼ 160 groups.
4. Convergence results

The graphs of the computational results are described as below.
The first three plots show the simulation of deterministic solutions when N is constant, and Dt varies:
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� The average of 16,000 independent solutions is shown in Fig. 3 for e–e collisions and in Fig. 10 for e–i col-
lisions. The independent simulations were used both to compute temperatures and to compute averages, as
described at the end of Section 3.
� The pointwise errors are shown in Fig. 4 for e–e collisions and Fig. 11 for e–i collisions.
� The pointwise order of accuracy r ¼ log2RðDtÞ is shown in Fig. 5 for e–e collisions.

The next two plots show the deterministic solutions when Dt is constant, and N varies:

� The average of 16,000 independent solutions is shown in Fig. 6 for e–e collisions and Fig. 12 for e–i
collisions.
� The deterministic pointwise errors eD are shown in Fig. 7 for e–e collisions and Fig. 13 for e–i collisions.

The simulation of statistical fluctuations is shown in the following part of the graphs:

� Figs. 8 and 14 show the statistical fluctuations when N is constant and Dt varies for e–e collisions and e–i
collisions, respectively.
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� Figs. 9 and 15 show the statistical fluctuations when Dt is constant and N varies for e–e collisions and e–i
collisions, respectively.

The convergence results are presented in the following manner. We first present results computed using
Nanbu’s method and then results computed using TA’s method. In the discussion about each method, we first
describe the results of deterministic (i.e., averaged) solutions. We show the simulations with a constant number
of particles N and varying time step Dt, as well as constant Dt and varying N. In order to understand the order
of time step accuracy, we also include the pointwise error ratio r. We then explain the results of statistical fluc-
tuations with the same set of Dt and N combinations as the deterministic case.

For all the plots presented here, the computational results obtained using Nanbu’s method are shown in the
left-hand column, whereas results obtained using TA’s method are represented in the right-hand column.

To analyze the Dt convergence for TA or Nanbu’s method, we generate a fine solution uf for each method.
The fine solutions are obtained using 6,400 particles and v0Dt ¼ 0:0076, where m0 is the effective collision fre-
quency. We use individual fine solution for each method to exclude the possibility of systematic errors for Dt
convergence. However, the difference of the two fine solutions is very small. We note that the simulations exhi-
bit convergence when Dt and 1=N are small. The deterministic error due to Dt and the statistical error due to N

both contribute to the total error in the solutions. For fixed N as Dt is decreased the errors in the simulations
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Fig. 9. (e–e case) Variance r2 of the results using Nanbu’s method are depicted in the left-hand column; results using TA’s method are
shown in the right-hand column. In each graph, the top row results are computed using m0Dt ¼ 0:24525, and the bottom row results using
m0Dt ¼ 0:0613.
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decrease monotonically until the statistical errors are dominant, and further decreases in Dt are ineffective in
reducing the total error. Similarly, for fixed Dt increasing N decreases the total error until N is sufficiently large
that further increases in N smooth the total error but are ineffective in reducing it.

After completing the scan of Dt for fixed N, we realized that with the number of collisions per particle per
time step fixed, increasing Dt had the effect of reducing the number of random numbers sampled in computing
the collisions per unit time. Because the statistical errors arise from both the number of particles used to
resolve the velocity distribution and the number of random numbers used to represent the collisions, the effect
of increasing the time step was to reduce N R, the number of random numbers, by a factor proportional to
1=Dt. With a contribution to the statistical errors scaling as 1=

ffiffiffiffiffiffiffi
NR

p
, the series of simulations scanning Dt

introduced a statistical error growing with increasing time step as
ffiffiffiffiffi
Dt
p

. Our data showing the results of the
Dt scan are in some qualitative agreement with this scaling argument (Fig. 5). By holding the number of col-
lisions per particle per time step fixed while increasing the size of the time step, the TA and Nanbu’s method
conflated the effects of Dt and the statistics of sampling the random numbers on the results of the simulations
of collisional relaxation.

In contrast to increasing Dt with fixed N, if we modify the TA and Nanbu methods by increasing the num-
ber of collisions per particle per time step N coll-p along with Dt so that the ratio of Dt=N coll-p is constant, then
the collisional scattering is essentially unchanged from not having changed Dt and N coll-p at all (assuming that
there is no particle advection or acceleration in fields). This was confirmed in a series of simulations. Cleanly
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Fig. 10. (e–i case) Average solutions �u; the results using Nanbu’s method are depicted in the left-hand column; results using TA’s method
are shown in the right-hand column. In each graph, the top row results are computed N ¼ 200 particles and the bottom row results using
N ¼ 3200; average of 16,000 independent realizations.
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separating deterministic effects due to Dt from the statistical effects arising from changing the number of col-
lision events and samples from the distribution of random numbers used in the collision operator is not trivial.

4.1. Simulation results using Nanbu’s method

In this section, we present the simulation results using Nanbu’s model. We discuss both the e–e and the e–i
cases.

4.1.1. Deterministic solutions �u(Dt;N ; t) and errors eD(Dt;N)

We begin with the deterministic solutions �u, when N is held constant and equal to 200 and 3200 and Dt
varies, see Fig. 3 for the e–e case and Fig. 10 for the e–i case. It is evident that random fluctuations from
the Monte Carlo simulation are eliminated after computing the average solutions, resulting in smooth time
relaxation curves �u. Clearly, when the time step Dt is smaller, simulation solutions approach the fine solution
uf . Additionally, if the number of particles is increased, we also see an improvement in accuracy. Fig. 4 (e–e)
and Fig. 11 (e–i) shows the result that when we keep N constant, eDð�;NÞ decreases as Dt becomes smaller.
When an e–e simulation was run longer, the error as shown in Fig. 4 peaks at a later time and then decreases.
This qualitative behavior resembles that seen in Fig. 11 for the e–i cases. We note that the general level of
errors in Fig. 11 for the e–i collisions is significantly smaller than the corresponding errors for e–e collisions
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Fig. 11. (e–i case) Deterministic errors eD; the results using Nanbu’s method are depicted in the left-hand column; results using TA’s
method are shown in the right-hand column. In each graph, the top row results are computed using N ¼ 200 particles and the bottom row
results using N ¼ 3200; average of 16,000 independent realizations.



C. Wang et al. / Journal of Computational Physics 227 (2008) 4308–4329 4323
shown in Fig. 4 in keeping with our earlier arguments based on the superior statistical resolution of the e–i
collisional simulations. To see the order of accuracy, we compute the order of accuracy r ¼ log2RðDtÞ. In
the e–e case, Nanbu’s method does not produce a precise order of accuracy but rather oscillates around
the value r ¼ 0:5, see Fig. 5. In the e–i case, we could not reach a conclusion about the order of accuracy,
see Fig. 16.

When Dt is held constant and N increases, the results for the e–e and the e–i cases are relatively different. In
the e–e case, the average solutions approach the fine solution uf , see Fig. 6. The corresponding pointwise errors
eDðDt; �Þ of the average solutions �u are depicted in Fig. 7. For each constant time step Dt, eDðDt; �Þ decreases
linearly as the number of particles N increases. In other words, the order of accuracy for the number of par-
ticles is OðN�1Þ. Moreover, as might be expected, for any number of particles N, eDðN ;Dt ¼ 0:0613=m0) is less
than eDðN ;Dt ¼ 0:24525=m0Þ. In the e–i case, we see generally the errors eDðDt;NÞ decrease when the number
of particles N increases, but the result is not as clearcut as the e–e case, see Figs. 12 and 13. We note that the
error at the first time step can be large, and there is no error at t0 by construction. The largest errors at the first
time step coincide with the largest values of m0Dt used, which are so large that the numerical collision operator
cannot compute the small-angle scattering accurately for a significant fraction of the velocity distribution. The
error at the first time step decreases significantly as m0Dt becomes small. As time progresses in the simulation,
the angle scattering (although inaccurate at large values of m0Dt) relaxes the initial anisotropy toward zero.
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Fig. 12. (e–i case) Average solutions �u; the results using Nanbu’s method are depicted in the left-hand column; results using TA’s method
are shown in the right-hand column. In each graph, the top row results are computed using m0Dt ¼ 0:2211, and the bottom row results
using m0Dt ¼ 0:05528.
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Because the anisotropy in the fine solution relaxes to zero as time progresses, the error in the anisotropy in the
simulation with respect to the fine solution necessarily also relaxes toward zero after the first time step (the
difference of two quantities both going to zero). Thus, the error at the first time step for large m0Dt is most
pronounced in the time histories of the errors.

4.1.2. Statistical fluctuations r2(Dt;N)

The numerical solutions computed using the Monte Carlo method are composed of deterministic compo-
nents and statistical fluctuations. In order to completely understand the statistical accuracy of the solutions,
we analyze the statistical fluctuations r2 of the solutions.

We first calculated the statistical fluctuations r2ð�;NÞ at various time steps Dt for N ¼ 200 and 3200 and
16,000 realizations. From Fig. 8 (e–e case) and Fig. 14 (e–i case) we can see that for each constant N, statistical
fluctuations r2ð�;NÞ have approximately the same values and are independent of the time steps Dt’s. In other
words, reducing the time step Dt does not have any influence on r2ð�;NÞ.

We then compute r2ðDt; �Þ when the time step Dt is held constant. The time step m0Dt in the e–e case is equal
to 0.2452 and 0.06013, and m0Dt in the e–i case is 0.22214 and 0.05528, see Fig. 9 (e–e case) and Fig. 15 (e–i
case). The statistical fluctuations r2ðDt; �Þ decreases linearly as the number of particles N increases. This means
that the order of particle number accuracy is OðN�1

2Þ, and one can reduce random fluctuations by increasing
the number of particles N, as is commonly expected.
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Fig. 13. (e–i case) Deterministic error eD; the results using Nanbu’s method are depicted in the left-hand column; results using TA’s
method are shown in the right-hand column. In each graph, the top row results are computed using m0Dt ¼ 0:2211, and the bottom row
results using m0Dt ¼ 0:05528.
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4.2. Simulation results using TA’s method

In this section, we describe the computational results obtained using TA’s method. We perform exactly the
same computations as for Nanbu’s model. This requires determining the average solutions �u and errors eD and
statistical fluctuation r2 at various time steps Dt and number of particles N.

4.2.1. Deterministic solutions �u(Dt;N ; t) and errors eD(Dt;N)

We use the same procedure as we used with Nanbu’s method. Specifically, we compute the average of
16,000 independent solutions when the number of particles N are held constant and equal to 200 and 3200,
see Fig. 3 for the e–e case and 10 for the e–i case. The average solutions eliminate random fluctuations from
the Monte Carlo simulation, resulting in smooth time relaxation curves �u. When the time step Dt is smaller,
simulation solutions approach the fine solution uf . If the number of particles is increased, we also see an
improvement in accuracy. Fig. 4 (e–e case) and Fig. 11 (e–i case) shows that when we keep N constant,
eDð�;NÞ decreases as Dt becomes smaller. When an e–e simulation was run longer, the error as seen in
Fig. 4 peaks at a later time and then decreases. This qualitative behavior resembles that seen in Fig. 11 for
the e–i cases.

When Dt is held constant, �u approaches the fine solution uf as N increases, as shown in Fig. 6 (e–e case)
and Fig. 12 (e–i case), however, the results for e–e and e–i cases are again different. In the e–e case, the
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Fig. 14. (e–i case) Variance r2 of the results using Nanbu’s method are depicted in the left-hand column; results using TA’s method are
shown in the right-hand column. In each graph, the top row results are computed using N ¼ 200 particles and the bottom row results using
N ¼ 3200; average of 16,000 independent realizations.
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corresponding pointwise errors eDðDt; �Þ decreases linearly as the number of particles N increases, see Fig. 7.
For any number of particles N, eDðN ;Dt ¼ 0:0613=m0Þ is smaller than eDðN ;Dt ¼ 0:24525=m0Þ. In the e–i case,
overall the errors eDðDt;NÞ decrease when the number of particles N increases, and eDðN ;Dt ¼ 0:05528=m0Þ is
generally smaller than eDðN ;Dt ¼ 0:2211=m0Þ, but the result is not as distinct as the e–e case, see Fig. 13.

TA’s method in the e–e case yields a clear value of order r ¼ 0:5 when the number of particles N ¼ 3200, as
shown in Fig. 5. However, we cannot obtain the order of accuracy r through error ratio in the e–i case, as
shown in Fig. 16.

In general Dt has to be small enough to see any improvement in accuracy when the number of particles N

increases. If Dt is too large, the time step errors dominate, and no improvement of accuracy will occur when N

increases. Fig. 7 also shows the relation between time step errors and particle number errors for the e–e case.
When m0Dt ¼ 0:24525, we can not reduce the errors eD by increasing the number of particles N. For the e–i
case, the corresponding results are not so clear. There is some decrease in the error with increasing N only
for the smaller value of the time step. We note that the errors in the e–i case in Fig. 13 are significantly smaller
than those in Fig. 7 because the statistical requirements for the e–i case are weaker. We point out that the error
at the first time step is large for large m0Dt because of the same reason as discussed in the Nanbu’s case in
Section 2.1.
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Fig. 15. (e–i case) Variance r2 of the results using Nanbu’s method are depicted in the left-hand column; results using TA’s method are
shown in the right-hand column. In each graph, the top row results are computed using m0Dt ¼ 0:2211, and the bottom row results using
m0Dt ¼ 0:05528.
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4.2.2. Statistical fluctuations r2(Dt;N)

The numerical solutions computed using the Monte Carlo method have deterministic components and sta-
tistical fluctuations. We examine the statistical fluctuations r2 of the solutions in this section. We again calcu-
late the statistical fluctuations r2ð�;NÞ at various time steps Dt for N ¼ 200 and 3200. The e–e case and the e–i
case produce similar results. We observe that for each constant N, statistical fluctuations r2ð�;NÞ have approx-
imately the same values and are independent of the time steps Dt’s, as shown in Figs. 8 and 14. Evidently,
reducing the time step Dt does not have significant effect on r2ð�;NÞ. The fluctuations are independent of
the time step Dt.

Once again we compute r2ðDt; �Þ when m0Dt is kept fixed and is equal to 0.2452 and 0.06013, see Figs. 9 and
15. The statistical fluctuations r2ðDt; �Þ diminish linearly as the number of particles N grows. This means when
the time step Dt is constant, the fluctuations decrease like O N�

1
2

� �
.

4.3. Comparison of the two methods

Simulation results obtained using the TA’s model were actually very similar to Nanbu’s model in the e–e
case and e–i case. Both methods yield more conclusive results in the e–e case than the e–i case. The major
advantage of Nanbu’s method is that the results are more accurate in terms of deterministic errors eD. Spe-
cifically, it yields approximately half the pointwise errors eDðDt;NÞ compared to TA’s method, see Fig. 4
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eDNanbuðDt;NÞ 	 1

2
eDTAðDt;NÞ:
However, as discussed in previous sections of this article, Nanbu’s method does not yield a higher order of
accuracy r. Using TA’s method we obtain a clearly defined r equal to 0.5, whereas the order of accuracy r

for Nanbu’s method oscillates around 0.5 in the e–e case, as shown in Fig. 5. The statistical fluctuations r2

for both methods decrease linearly as N increases, as shown in Fig. 9. However, when the particle number
N is held constant, the statistical fluctuations are independent of the time step Dt, and using both methods
results in approximately the same fluctuations, see Fig. 8. In other words,
r2ðDt;NÞ 	 cN�1
where c is independent of N and Dt and is applicable to both Nanbu and TA’s methods. As we have pointed
out, two error sources, from time step and number of particles, exist in the simulation. One can see the relation
between time step errors and particle number errors for both methods from Fig. 7. To see any improvement in
accuracy when the number of particles N increases, Dt has to be small enough so the major errors come from
the number of particles N. From this point of view, Nanbu’s method also has advantages over TA’s method.
One can use larger Dt, i.e., m0Dt ¼ 0:24525 in the e–e case, and still see the improvement in accuracy when N

increases. This also shows Nanbu’s method produces smaller time step errors.
For the same time step and number of particles, Nanbu and TA take about the same time. Nanbu may be a

bit slower because it involves inverting a function, but this problem can be resolved by computing A in
advance and storing the result for quick access. One can also ask whether Nanbu’s method is more accurate,
so that it would be faster for fixed error tolerance. Our paper is aimed at answering that question, and the
results are mixed: the statistical error is the same for the two methods, but the deterministic error is about
two times smaller for Nanbu.
5. Summary and discussion

In this paper, we have performed a convergence analysis to compare the two widely-used Monte Carlo bin-
ary collision models proposed by Takizuka & Abe and Nanbu. Our test case is a spatially homogeneous
plasma with no electric or magnetic fields. We compute the relaxation of anisotropic temperatures over time
due to collisions, using the results to evaluate the accuracy and efficiency of these two methods. Extensive sim-
ulation results are presented for both electron–electron and electron–ion collision cases. To facilitate the error
analysis, we extract the deterministic errors by computing the mean of multiple statistically independent solu-
tions. The statistical errors are computed using the empirical variance of these solutions. The comparison
includes both the deterministic errors and statistical errors when the time step or number of particles is varied.
We also compute the order of accuracy in time using an error ratio.

There are a number of similarities between the two methods. Both methods yield more conclusive results in
the e–e case. In the e–e case, the two methods have the approximately O

ffiffiffiffiffi
Dt
p� �

time-step accuracy computed
from log of the error ratio r ¼ log2R. Our convergence results differ from the result described by Bobylev and
Nanbu in [7]. According to their derivation of the time–explicit formula, the order of time-step error is for-
mally OðDtÞ, but our simulation studies with the number of particles and the number of collisions per particle
per time step fixed found the accumulated error scales as O

ffiffiffiffiffi
Dt
p� �

. By reducing the number of collisions when
we increased the time step, the statistical errors associated with the random number sampling increased, scal-
ing as O

ffiffiffiffiffi
Dt
p� �

. This scaling is consistent with the approximate scaling observed in the simulations.
In the e–e case and e–i case, the statistical fluctuations r2ð�;NÞ are independent of time step Dt when N is

kept fixed.
When Dt is held constant, the fluctuations r2ðDt; �Þ diminish linearly when the number of particles N grows.

In our analysis, the overall errors come from two sources: deterministic errors due to the time step and random
errors due to the number of particles. Another similarity between the two methods is that the errors originat-
ing from one source – either time step Dt or number of particles N – may dominate the total errors. For exam-
ple, to see the decrease in errors when Dt decreases, N has to be large enough and Dt cannot be too small. Once
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Dt becomes too small, we cannot see any improvement in accuracy when reducing the time step Dt unless we
increase the number of particles N.

While both methods have the same order of accuracy O
ffiffiffiffiffi
Dt
p� �

in the e–e case (with one collision per particle
per time step), Nanbu’s method is more accurate. Specifically, it produces a time-step error that is smaller by a
factor of 1/2, i.e.,
eDNanbuðDt;NÞ 	 1

2
eDTAðDt;NÞ
This means that Nanbu’s method can use 4Dt to achieve the same accurate results as TA’s method. This trans-
lates to a considerable savings in time and cost.

Nanbu’s method is more complicated and therefore harder to implement. Nanbu’s method involves solving
a nonlinear function for A for every s. However, the value of A can be computed in advance and stored in a
table; therefore, this disadvantage is not that significant because ultimately it does not slow down the
computation.

To conclude, many similarities exist between the two methods. However, we note the advantage of Nanbu’s
method in reducing the computational cost and achieving higher accuracy. We are currently exploiting Nan-
bu’s method in extending the earlier hybrid method developed for rarefied gas to the simulation of plasmas
with Coulomb collisions with improved computational efficiency.
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